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Abstract The Riemann problem for zero-pressure flow in gas dynamics in one dimension and two dimensions is
investigated. Through studying the generalized Rankine-Hugoniot conditions of delta-shock waves, the one-dimensional
Riemann solution is proposed which exhibits four different structures when the initial density involves Dirac measure. For
the two-dimensional case, the Riemann solution with two pieces of initial constant states separated at & smooth curve is

obtained.
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. Consider a zero-pressure flow in gas dynamics

o, + div(pu) = 0,

d p) j= 1"“9d’ (1)
(ou;), + E a—xk(pujuk) =0,

k=1

where p(x, t)=0and u(x,t)=(uy, ,uy)(x€ RY, t€ [0, ®)) are the density and the mean
velocity respectively, 3, Tepresents the partial derivatives with respect to the space component x; ( k
k

=1,*,d). This model can be viewed as a direct result of imposing the pressure p = 0 on the Euler

equations,

o, + div(pu) = 0,
j=1,",d. (2)

d
J p
(ou;), + ;21 3, PUe) + EPA
Besides, model (1) is referred to as the adhesion particle dynamics system to explain the formation of
the large-scale structures in the universe!!) . In this paper, d is 1 or 2.
The distinct feature is that Eqs. (1) have repeated eigenvalues and incomplete associated eigen-
vectors. The C' solution of (1) can be given by the explicit formula
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u(x,t) = uo(¢(x’t))’

oo($(5,1)) - (3)

du, |’
]

3%,

it

P(x’t)
oy +

where (pa yug)(x9) € C '(R%) are the initial density and veloctiy, ¢/(x,¢) is the inverse of flow

1, i= k,
’ the Kronecker symbol.

map I + tug:x = xg + tug( %) and aik={0 Pk

Equation (3) shows that C! solutions of (1) may not exist after a finite time. More precisely,
the density itself and the gradient of velocity become a singular measure if the flow map is compres-
sive. So we have to seek discontinuous solutions. For bounded BV solutions, the normal directional
components of the velocity on both sides of a discontinuity must be identical, otherwise there is no
bounded solution. Noticing that the solution must develop Dirac measure in the density for some
cases, we introduce delta-shocks in the solution of (1). For the exact definition of the delta-shock

wave, the reader may refer to Reference [2].

The study of delta-shocks began in 1990 when Tan et al. found that no classical weak solution
existed for some values of initial data in the investigation of the Reimann problem for a 2 x 2 simpli-
fied model of the Euler equationsm ,

u, + (u2)x + (uv)y =0,

(4)

v, + (uv)x + (v2)y = 0’

and that delta-shock waves were necessarily used as parts in their solutions. Since then some efforts
have been made to search for the physical background of the delta-shock and to perfect its mathemati-

cal theory. Sheng et al. [4]

set forth from the splitting method of the numerical scheme of the Euler e-
quation, and studied the Riemann problem for (1) in one dimension and in two dimensions with the
vanishing viscosity method when the initial density is just a function of total bounded variation. Later
it was found that (1) is just the consequence of neglecting the pressure effect on the Euler equation'
or an adhesion particle dynamics model in astrophysics[l]. The delta-shock can be explained as the
concentration of particles after collision. Besides, Bouchut also discussed this model in one dimension

from the point of view of cold plasma, low pressure and evanescent viscosity[S] .

Since the delta-shocks appear in the solution, it is natural to consider that when the initial data
contains Dirac measures, the viscosity vanishing method is too complicated to solve this problem.
Thus we gave generalized Rankine-Hugoniot conditions to define one-dimensional and two-dimensional
delta-shocks'?! . Although the generalized Rankine-Hugoniot conditions are rather complicated in
form, we can discuss them explicitly.

1) Li, J. Note on the compressible Euler equations with zero temperature. Appl. Math. Let., in press, 2000.
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In this paper we study the Riemann problem for Eqs. (1) in one dimension and two dimensions
respectively. The crucial arguments are how to solve the generalized Rankine-Hugoniot conditions .
The above discussion shows that the Riemann solutions can be used as a building block to establish

the existence of the general Cauchy problem.
1 Generalized Rankine-Hugoniot conditions of delta-shocks

In this section we will give a precise definition of solutions of (1) in the sense of distributions.
The equivalent solution can be defined in the sense of measure. Then we will offer the generalized
Rankine-Hugoniot conditions of delta-shocks and the so-called entropy conditions to ensure the

uniqueness .

Definition 1. (o, u) is a solution of (1) in the sense of distributions if

Lo'w)depgo, + (pu) + V pdxdt = 0,
j=1,d;d =1or2 (5)

J[o,m)xx‘pu’% + (puu) + V pdxdt = 0,

for every p(t,%)€ Cg ([0, ) x R?), where V is the gradient operator.
Definition 2.  The weighted Dirac delta function wd is a distribution in D' ([¢,d] x R?).

(i) w(t)6€ D' ([c,d] x R) supported on a smooth curve L:x = x(t)(c<t<d) is de-
fined by

(w(t)dy, @) =JdW(t)¢(t,x(t))dt, p(t,x) € C2([0,o] x R). (6)

(ii) w(t,s)86,€ D' ([¢c,d] x R?) supported on a smooth surface of

X x(t,s),
S:{ (agt<b,cgs<d)
y = y(t,8),

is define by

b(d
(wds,p) = J j w(t,s)p(t,x(t,s),y(t,s))deds,

o(t,x,y) € €2([0,=) x R?). (7)

We consider the one-dimensional case of (1) at the outset. For a bounded discontinuity x =
x(t) in the sense that the solution is BV, the Rankine-Hugoniot condition is
dx

g=q, = I_u(e) =1, u(e). (8)
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Throughout this paper ! _ u and !, u are the limit values of u on the left-hand side and right-hand
side of x = x(¢) respectively.

Identity (8) shows that the bounded discontinuity is just a slip line denoted by J, and two
states, (po;, u;)(%, ¢) and (p,, u,)(%,t), can be connected by J if and only if I _,(¢) =1, u
(t). When the initial data of Eqs.(1) are decreasing, the characteristic lines overlap and bounded

solutions do not exist. So we introduce delta-shock solutions which are measure solutions in the form
of

({Ol’ul)(x’t)a X < x(t)’
(p u)(x,t) = {(w(e)d(x - x(2)),us(2)), =z = x(2), (9)
({Or’ur)(x’t)’ x > x(t),

where x = x(¢) is smooth enough. This solution consists of two parts, an ordinary part and a singular
part. It should be understood in the sense of distributions. The reason why they are written in such a
form is that we can see where the ordinary and singular parts are without introducing more notations.
The same notations will often be used in the following such as Eqs.(14) and (18) below.

It is easy to check from Egs. (5) that x(¢), us(¢) and w(t) are defined via the generalized
Rankine-Hugoniot condition

A ST AR A ) (10

where [ p ] = p, - p, is the jump quantity of p across the delta-shock x = x (t) for which we supple-
ment the so-called entropy condition

I_u(e) > ug(t) > 1, u(t). (11)

Here we should point out that the entropy inequality

d a
5p5(u)+£pu5(u) <0 (12)

for every convex function S: R— R cannot ensure the uniqueness'! .

For the two-dimensional case of (1), if we consider bounded weak solutions as similar to those

of the one-dimensional case, then we obtain the Rankine-Hugoniot condition of

n,o= - um, - YN, = - Un, - U0, (13)

X

for a bounded discontinuity, where (n,, n,, ny) is the normal direction of the discontinuity . Identity
(13) shows that the components of velocity in the normal direction of a discontinuity on both sides of
the discontinuity must be consistent. Therefore it is necessary to consider delta-shock solutions as

similar to those in the one-dimensional case.
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Let a delta-shock solution be
Corrupsv)(x,y,t),
(o u,v)(x,y,t) = {(w(e,s)0(x - x(t,5),y — y(t,5)),us(t,5),05(2,s)), (14)
(orrtyrv,)(x,9,t),
where
x(t,s),

S (15)
y = y(t,s)

®”
1]

is a discontinuity surface with a suitable parameter s. Then the generalized Rankine-Hugoniot condi-
tion is a system of the first-order partial differential equations

5? = ua(tvs)s

d
<5x= v5(t,s), (16a)

28 (oLl L)) - (momyony),

€£g$£2 = ([Pu],[puzjs[puv])° (nt,nx’ny),
(16b)
2%) (], Lpw ) L?D) + Covomomy)s

where u and v are the respective components of velocity in x and y directions, (n,, n,, ny) =

a 3 dy 23
uy 2 vy =2 y — -4 ,—Jﬁ is the normal direction of S oriented from (1) to (r) ((1) is the ab-
ds ds ds ds
breviation of the side where the state is ( 01>y, v;)), [p] = p; — p,. For the definiteness, we always
denote by (r) the side of (x — x¢, ¥ — ¥0)*(n,, n,) >0 for all £ >0, where (%4, %¢,¢) is a point

of S,

For the two-dimensional delta-shock S, the geometrical entropy condition is that the characteris-
tic lines on both sides of 8 are incoming. In other words,

(u,,0,) » (ny5n,) < (upywg) * (nyyn,) < (ugywp) « (ngyny). (17)

As we have pointed out above, system (16) has exactly a quintuple eigenvalue A = Q indepen-
dent of all variables. In this sense, it is somewhat similar to a degenerately linear system of hyperbolic
partial differential equations.
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2 Riemann solution in one dimension

Now we start to discuss the Riemann problem for (1) in one dimension with the standard charac-

teristic method using the generalized Rankine-Hugoniot condition (10). Due to obvious reasons, we

consider the Riemann initial data involving singular measures

(pl;ul)a x < 0,
(p,u)(x,0) = {(med,u,), x =0,
(o,»u,), x > 0,

where p;, mg and p, are not all zero. Otherwise the solution is trivial.
At first, we solve system (10) with the initial condition
x(0) = 0,w(0) = my and us(0) = u,
satisfying u; > ug > u,. Obviously, we have
w-[ple = my-[pult,
Wiy — [pu]x = MylUpy — [puz]t.
It follows that
[olaus - [pulx = moug - [pu?lt = (mg = [pult)u,
or
dilediay (mo- [oul)n) = mous - Lou?le.
Solving this equation gives

mougt — t*[ pu®1/2
mo - Loult

» PL = Orsy

x(t) =

- (mo - Loult) + w(s)
[p] » P1FE O

and

w(t) = (m§ +2me([plug - Lpul)t + pp,(u; - u,)ztz)%.

Furthermore, from (20) we get

(18)

(19)

(20)

(21a)

(21b)

(22)

(23)
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us(t) = ﬁ([‘ou]x + moug - [pu?)]t). (24)

Especially, if mq=0, then

V (Olul + torur V (Olul + prur]
(x(t)sw(t),us(t)) = | ————t:/ o0, (uy = u )t ,——————|[. (25)
AR [ﬁ,wz“"‘” SN

Lemma 1. The solutions of (10) and (19) possess the following properties:
(i) u, < us <y, (26)

(ii) f o, + p, >0, then

'\/;lul + L£rir

limus(t) = —————=——. 27

o Vou + /e,

If p;=p, =0, then us=u,.
(iii) x' (¢) is a monotone function of ¢.
The proof of this Lemma is a simple matter, so the details are omitted.

Now we start to construct the Riemann solutions of (1) and (18) . For simplicity, we hereinafter
denote a particular particle by its Lagrange coordinate %, and the vacuum state by Vac. According to
the relation of u;, uyand u,, we solve the Riemann problem case by case.

Casel. u, < ug< u;. This is a typical case, a delta-shock emits from the origin. Solving
(10) and (19), we obtain a fusion solution

(pr>u), x < x(t),
(pru)(x,t) = {(w(t),8,us(t)), = = 2(2), (28)
(Pr’ur)s x > x(t)s

where x(t), w(t) and us(t) are defined in Equations (22) ~ (24).
Case 2. u;= u, = uo(for the case where ug= u,= u,, the structure of solution is similar) .

It is easy to see that the particles at xy < 0 collide with the particle at the origin at first, and the
trajectory, mass and velocity of the fused particles are respectively
1
my + ppult - (m(z) + mopl(ul - uo)t)2

x= x(1) = o ,

1
w= w,(t) =)m3+ 2mopo(uy = ug)t)2,
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mo( u - uo)

ual(t) = ul_—w(t)_' (29)

At the time ¢ * while x,(¢" ) =uz™, i.e.

2mg(u, - ug)

t=t" = , (30)
(Ol(u’l - ur)z
the particles at %, <0 start to collide with those with x4 > 0. At this moment,
x=2x" =x0(t"), w=w"=w(t"), u = u; = ual(t*). (31)

After that, x(t), w(t) and us(¢) are defined by the generalized Rankine-Hugoniot condition (10)

and the initial condition (31). The details are omitted. The solution can be expressed as

(pl,u[), x < xl(t),

(w,(£)0,us (1)), x = x,(t),

(p,u)(x,t) = 4 (32)
Vac, X < x < ud,
L (o), % > ul,
when £ <t™, and
(prsup), x < x(t),
(pru)(m,1) = {(w()d,us(t)), x = x(t), (33)
(orru,), x> x(t),

when t=1¢" .
Case 3. ug< u; < u,(when u; < u, < ug, the structure of solution is similar) .

At the beginning, the particles at xy < 0 collide with the particle at x; = 0. The trajectory
x(t), mass w(t), and velocity us(¢) of the fused particles can be expressed as in (29) ~ (31),

respectively,
x(t) = 2,(t), w(t) = w,(t) and us(t) = u,;l(t). (34)

Since u; < u, and ug < ug (¢) < u;, uy (t) are always less than u,, showing that the particles with
1 1

%o <0 never collide with those x4 > 0. The solution for this case can be expressed as
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( Corruwy), x < x(t),
(w(t)o(x - x)()),us(t)), x = x(1),
(pru)(x,t) = 1 (35)
Vac, x(t) < % < ut,
{ (p,>u,), x = ut.

Case 4. u;<ug<u,. For this case, the solution is simple and can be written as

(orsu)s X u,t,
Vac, ut < x < upt,
(p,u)(x,t) = {(mpd(x = up(t)),ug), x = ugt, (36)
Vac, upt < x < ut,
\ (pr,u,), x = ul.

This solution is called a collisionless solution.

Remark. When my =0, the solution exhibits a simple structure which is consistent with the
results in Ref. [4]. This implies that the solution constructed here is stable under some viscosity per-

turbations .
3 Two-dimensional Riemann problem with two pieces of initial data

Now we consider the 2-D Riemann problem for (1) with two pieces of Riemann initial data:

(p1,u1’01)’ Y >f(x)’
(pru,v)(x,y,0) = (37)
(pasuasv2), ¥ < flx).

The crucial argument is to parameterize the discontinuity surface in the form of (15).

For simplicity, we assume that I": y = f(x) is a smooth curve separating (x, y) - plane into two
infinite parts and does not intersect itself. Orient the normal direction of I'" in ( %, y)-plane from state
1

N1+f'(x)?

which the initial state is (p;,u;,v;) (i =1,2). Then we have the following lemma.

1 to state 2 and denote it by 7 = (- f'(x),1) where (i) denotes the domain in
Lemma2. I[v]-[ulf’'(x) >0, (38)

then the characteristic lines from state 1 will intersect those from state 2, where [v] = v, - v;, etc.

Otherwise they will not intersect.

Proof. Inequality (38) is equivalent to
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uf'(x) = vy < uyf'(x) - vy (39)

The characteristic directions of the left state (p;, u;, v;) and the right state (p,, u,, v;) are in

(x, y, t)-space,
¢; = (uy,v,1) and ¢, = (up,0,,2), (40)
and the tangential direction at any point of I" in (%, y)-plane is
T = (1,f'(x),0). (41)
Via computation we obtain
(- f'(2),1,u f ' (x) = v),

n, CIXT

(42)
n,=c;xT = (=f"(x),1,uf'(x) = v,).

So the planes passing any point (s, f (s)) of I" and with the normal direction 7, and n, are respec-
tively

Q:-(x=-35)f"(s)+(y = f(s)) + (uf'(s) = vy)t =0,
(43)

0Q,: - (x=s)f'(s) + (y = f(5)) + (upf'(s) = v)t = 0.

Inequality (39) implies that
- (% = )f ' (x) + (yy = f(5)) <= (wy = 8)f ' (s) + (yy - f(5)), (44)
in which (x;, ¥,, t) and (x,, y,, t) are points of £, and (2, respectively. Thus we have
(%3 = 21,92 - 7))+ (f'(s), - 1) <0, (45)
which shows that Lemma 2 holds.

Lemma 2 means that a two-dimensional delta-shock wave must emit from the initial discontinuity
I':y = f(x) when (38) is satisfied. In what follows, we will discuss the Riemann problem in two

cases.
Case 5. [v]-[ulf'(x)>0.
In order to use the generalized Rankine-Hogoniot condition (16), we parametrize I" as

X =S,
I: (46)
y = f(s),

and we just consider the case of w =0 initially and [ p] 0. As the case in which [ p] =0 is rather
simple, we omit it. First, we notice that
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Loullev] = [pllpur] = pyplullv],
(ollou®] - [pul* = - p1palul’.
By the generalized Rankine-Hogoniot condition (16), we have

dw 9 (wuy)

(47)

L] 52 - 101 =5 = ([p1lpu] - [pu]®) SE + Covdlpu] - [p)Loun]) 2

= plpz[u](— [u] %f + [v] g_i)

and

Id(wu X
[pw]ég? - [p] (a,a) =- PIP2["](' L] %% + L] %;)'

A comparison of (48) with (49) leads to the identity

(o) 22 - 101 22%2) - fu( 1 22 - 1,1 202),

which is rewritten as

52{([0][pu] - [ullep] - [pl([v]us - [ule;))wl = 0.

It follows that
([o]lpu] = [ullpp] - [p)(Tv]us - [ulvs))w = 0.
Since w >0 when t >0 and [ o]0, we obtain
vouy - viuy — [v]us + [ulvg = 0.
That is,

_ M U v — Usv;
BETINY LT

Eq. (51) also shows that

a 3
Voll] — VylUy — [v]a—j + [u]g% = 0.

Integrating it, we get

—[olx + [uly =~ Cuyvy = upvy)t = [w]ls + [ulf(s),

(48)

(49)

(50a)

(50b)

(51)

(52)

(53)
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which is differentiated with respect to s, and is

Hence we get
a—x=%%§_(%f«s>-1). (54)
We calculate

dy dx ([u] +u1”2"u2”1)§1 ([u]ﬂ_([u]

U3y TV as T\ W™ [v] as ~ U\ Tv] 3s ﬁf’(s)_l))
=ﬂ£2[;]ﬂ%f+va(%f’(s)—l). (55)

Therefore, we have

R va(%f’(s) 1)) el - [ou] &

cL)(F4 5 - (Mo 1))

- (Bl <)ooy - L) (56)
=557/ = 1) Telvs - [ ]).

a
Always regarding vs as 5‘% , we get

3o (- o) o (o .

It follows that

o= (1o 0ty < (B ) tmie - (7o) - 1) 1o1s00)
=_(E—Z—]lf’(s)-l)([pv]t+[p]f(S))- (57)

Similarly, we have

a(::B) - (%f’(‘s) _ 1)([[3“]”8 - I:p’U:lz)9
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So
wy = (P47 () = 1) Tewly == (EH77(0) - 1) ot + [ao]f (). (58)

From (57) and (58), we obtain

[ [u]

- (Lpv*le + [ow]f(s}.
That is,

Lolvsy = [pvly = (Lpvle + [plf(s))vs = (Lpv?lt + [ov]f(s)),

since % f'(s) = 150. Note that (59) is equivalent to

2Ll (Canle s Lo1f(D)y) = = (1t + [wIfo)).
Integrating it, we have
2
2 2
Solving (60), we get
y = [—:)]([pv] ++/pipilv])e + £(s).
And from (53) we have

% = [Lp]([pu] s/ oo lul)t + 5.

Thus

_ «/?1“11«/?2'12 «/?H’li«/?z”z
(ua,va) = .

Versve: T Yoz e

By the entropy condition (17), we have
uzf’(x) -V < u,gf'(x) ~- 75 < ulf’(x) - V5.

It is easy to check that

) - (ﬁ N ﬁ)

Ver-ver T Ve -V

([Tu]f’(s) - 1)([p]vay - Levly) =(mf’(s) - 1) H(Lewle + Lplrts)),

Lp_]zyz - (Lol + [plfGs))y + L‘;—]f(s) + L&]tz +[pvlf(s)e = 0.

(59)

(60)

(61)

(62)

(63)

(64)
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does mnot satisfy (63). Thus we choose

«/?1“1+«/;2u2 «/;1”1+«/;202
Jorver o VeorVe

(ua,va) = (65)

as our solution. So, we have

«/?1u1+\/_()_2u2t+s \/?1”1*’\/—("2”2
Vi + e Voi+ e

(x,y) = t+ f(s)|. (66)

Finally, we obtain

w(t,s) = (%f’(ﬂ - 1)([,0]1)3 - L]t

= v p1o2(= [ulf’(s) + [0]). (67)

Case6. [v]-[u] f'(x) <0. For this case, the structure of solution is simple and the solu-
tion can be written as

(p1rur>v1), X = Xy,
(pru,v)(t,x,y) = § Vac, Xy < X < Xy, (68)
({02911'2,”2)’ x < X3,

for any fixed ¢t = T >0 and y = Y, where x, and x, are the intersection points of the straight line

t=T, y=Y and the surfaces y = f(x - tu,) + tv; and y = f(x — tu,) + tv, respectively.

Remark. For the general case, the structure of solution is just the combination of solution of
Cases 5 and 6.
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